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Abstract

A theoretical approach for the free vibration analysis of delaminated unidirectional sandwich panels is developed. The

theoretical model accounts for the flexibility of the core in the out of plane (vertical) direction and the resulting high-order

displacement, acceleration, and velocity fields within the core. The analytical approach is based on Hamilton’s variational

principle along with the high-order unidirectional sandwich panel theory and the modified Galerkin method. The two types

of models investigated include delaminated regions with and without contact. The ability of the model to describe the high-

order effects such as the pumping phenomenon and the localized effects in the vicinity of the delaminated regions is

examined. A numerical example that focuses on the free vibration behavior of simply supported delaminated

unidirectional sandwich panels is presented and discussed. A parametric study that examines the influence of the length

of the delaminated region, its location, and the mechanical properties of the core material is presented. The numerical

results are also compared with finite element analysis and with some special asymptotic cases for which the free vibrations

behavior is analytically evaluated. A summary and conclusions close the paper.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

High stiffness and low weight sandwich panels are frequently used today in many structural applications.
Recently, the use of sandwich panels made of composite laminated face-sheets and a plastic foam or low
strength honeycomb core has become a common practice. These cores are characterized by their shear
deformability and flexibility in the horizontal (in-plane) and vertical (out of plane) directions that result in
high-order displacement, acceleration, and velocity fields through the height of the core. The shear
deformability and the vertical flexibility of the core affect the overall response and cause the panel to change
its height and distort its cross section plane under loading. Under dynamic conditions, these effects allow
vibration modes that consist of relative displacements between the two face-sheets in the vertical (out of plane)
and longitudinal directions to develop.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Sandwich structures in general, and especially those constructed with a soft core, are susceptible to partial
debonding of the face-sheet from the core at their interface. This effect is illustrated in Fig. 1 and is termed
delamination. Such delaminations are usually a result of the layered configuration of the panel, the
manufacturing process, the considerable difference between the elastic properties of the face-sheets and the
core, adhesive degradation, impact loads, and stress concentration due to localized loading, see Refs. [1–3].
Experimental investigations showed that such delaminations affect the integrity of the panel, reduce its overall
stiffness, modify the dynamic behavior of the panel, and lead to a premature failure below the design loads; see
Refs. [4–7].

The delaminated surfaces are free of shear stress and may slip longitudinally one with respect to each other.
Yet, they can accommodate vertical normal compressive stress if contact between the surfaces exists. In
general, the delaminated region is comprised of zones in which the delaminated surfaces maintain vertical
contact and accumulate vertical normal compressive stresses (‘‘delamination with contact’’), and zones where
opening of the interfacial delamination crack occurs and the delaminated surfaces are free of stresses
(‘‘delamination without contact’’). The differences in the contact conditions have a major influence on the
dynamic characteristics of the entire panel.

The free vibration and dynamic behavior of fully bonded incompressible sandwich panels has been
extensively investigated, see for example, Refs. [8–11]. However, these studies have neglected the
compressibility of the core and the corresponding high-order displacement, velocity, and acceleration effects.
This type of analysis is applicable to sandwich panels with traditional incompressible cores; see Refs. [12–15].
On the other hand, in modern panels with a soft core, the high-order effects and the corresponding high-order
acceleration and velocity fields affect the static and dynamic response of the panel and cannot be neglected.

Ng [16], Vaswani et al. [17], and Lok and Cheng [18,19] studied the dynamic behavior of fully bonded
sandwich panels using equivalent single layer (ESL) beam theory approaches. Using a similar concept,
Kant and Mallikarjune [20] and Nayak et al. [21] used the classical lamination theory. This approach was also
used by Kant and Swaminathan [22] for the investigation of panels with a soft core. Although the ESL
approach and the classical lamination theory yield a satisfactory description of the global behavior of the
panel, they can not account for phenomena such as wave-like deformations through the height of the core and
a relative displacement between the face-sheets. These effects become even more significant in the case of
delaminated panels.

The natural frequencies and vibration modes of delaminated sandwich panels have been investigated in a
smaller number of studies. Lee [23], Tracy and Pardoen [24], and Hu et al. [25] examined the free vibration
behavior of delaminated sandwich panels. However, they neglected the high-order displacements of the core
and assumed that contact between the debonded surfaces does not exist. Kwon and Lannamann [26] used a
finite element analysis (FEA) to study the behavior of delaminated sandwich panels due to an impact load
taking into account the conditions of with and without contact. On the other hand, the compressibility of the
core was ignored. In addition, the different length scales that characterize the sandwich panel (thin face-sheets
and thick core), the considerable differences in the mechanical properties, and the singularities near the
delaminated region tip significantly affect the FE results. Lok and Cheng [27], Kim and Hwang [28], and Hu
and Hwu [29] investigated the free vibration behavior of delaminated sandwich panels based on the ‘‘global
behavior’’ approach. Notice that this approach neglects the critical localized effects and their influence on the
response of the panel.
Fig. 1. Simply supported delaminated unidirectional sandwich panel.
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Frostig et al. [30] and Frostig [31] have taken into account the compressibility of the core and developed a
high-order approach for the static analysis of fully bonded and delaminated unidirectional sandwich panels
with a soft core. Frostig and Baruch [32] used the high-order approach to study the free vibrations of fully
bonded unidirectional sandwich panels, assuming linear velocities through the height of the core. As a result of
these assumptions, the model assumes that core transfers its inertial loads to the face-sheets rather than
resisting them by itself. Thus, wave-like behavior of the core and inner vibration modes are not considered.
Sokolinsky et al. [33], and Yang and Qiao [34] applied the above approach to a higher-order velocity and
acceleration fields in the core. This formulation leads to an inconsistent model that involves time derivatives of
the stresses. Frostig and Thomsen [35] presented an analytical dynamic model for fully bonded panels, in
which a polynomial distribution of the displacements through the height of the core is adopted. The model
predicts wave-like behavior of the core both in the longitudinal and the vertical (out of plane) directions,
which is constrained by the fully bonded face-sheets. However, this type of behavior cannot exist in
delaminated unidirectional panels, and the above model can not be applied to delaminated unidirectional
panels. Schwarts-Givli et al. [36] presented a nonlinear dynamic analysis that accounts for the complex time
and space dependent contact conditions at the delaminated region. However, in order to perform such a
complex, nonlinear, and time-dependent analysis, a simpler model that can be used for an initial assumption
of the response of the structure and estimation of its dynamic characteristics is essential. The combination of
the ‘‘with contact’’ and ‘‘without contact’’ models developed in this paper serves this purpose.

The objective of this study is to explore and quantitatively describe the free vibration behavior of
delaminated simply supported unidirectional sandwich panels with a ‘‘soft’’ core. A theoretical model that
considers the deformability of the core, the high-order displacement, velocity, and acceleration fields in the
core, and the rotary inertia of the face-sheets and the core is developed to achieve this goal. The present study
uses a formulation that is based on displacements only, and thus it allows a consistent variational formulation.
The displacement fields in the core assume polynomial patterns that correspond to the closed form analytical
solution of the static case [37]. The delaminated surfaces may be in contact vertically but may slip
longitudinally with respect to each other. In terms of the vertical conditions at the delaminated interface, a
distinction is made between debonded regions with contact and regions without contact.

The mathematical formulation is based on Hamilton’s variational principle and the free vibrations problem
is formulated and solved through the modified Galerkin method with a truncated series expansion. The
sandwich panel is considered unidirectional and it is simply supported at the face sheets and at the core.
Hence, a series expansion that consists of trigonometric function is used to describe the vertical and
longitudinal displacement, respectively. The model accounts for the high-order displacement, velocity, and
acceleration fields in the core, thus the height of the core may change, and its plane section does not remain
planar after deformation. In addition, the model assumes small deformations and a linear elastic behavior, it
accounts for the rotatory inertia of the face sheets and the core, and it assumes that the core can resist shear
and vertical normal stresses and that its longitudinal stiffness is negligible. Finally, it is assumed that the
debonded regions exist prior to the loading and do not grow, and that the contact characteristics at the
delaminated interface (with or without contact) are known a priori and do not change with time.

The mathematical model is presented first. Next, the results of the proposed model are verified through a
comparison with finite-elements results and with some specific asymptotic cases with analytical results.
Numerical examples that focus on the influence of the contact characteristics (‘‘with contact’’ or ‘‘without
contact’’ conditions) on the free vibration response of unidirectional sandwich panels are presented and
discussed. The ability of the model to describe the vibrations through the thickness and the stress and
displacement fields near the tip of the interfacial delamination crack is described. Finally, a parametric study
that examines the influence of the location and length of the debonded region and the effect of the mechanical
properties of the core is conducted. In the sequel, a summary and conclusions are presented.

2. Mathematical formulation

A unidirectional sandwich panel that is debonded at one of its face–core interfaces comprise of two types of
regions: a ‘‘fully bonded’’ region and a ‘‘delaminated’’ region, see Fig. 1. In the delaminated region, the
delaminated surfaces may longitudinally slip one with respect to the other, but can be in contact vertically.
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Hence, two types of delaminated regions may exist: a delaminated region with vertical contact or a
delaminated region without contact. In the formulation, all of the three characteristic regions, i.e. fully
bonded, debonded with contact, and debonded without contact, are combined into a unified model for the
entire panel.
2.1. Hamilton’s variational principle

The mathematical formulation uses Hamilton’s variational principle that reads:Z t2

t1

dðT �UÞdt ¼ 0, (1)

where T is the kinetic energy, U is the internal potential energy, t is the time coordinate, and d is the variational
operator.

The first variation of the kinetic energy reads:

dT ¼

Z t2

t1

Z
vt

rt _utðx; zt; tÞd _utðx; zt; tÞ þ _wtðx; tÞd _wtðx; tÞð Þdvt

�

þ

Z
vb

rb _ubðx; zb; tÞd _ubðx; zb; tÞ þ _wbðx; tÞd _wbðx; tÞð Þdvb

þ

Z
vc

rc _ucðx; zc; tÞd _ucðx; zc; tÞ þ _wcðx; zc; tÞd _wcðx; zc; tÞð Þdvc

�
dt, ð2Þ

where the subscripts t, b, and c refer to the upper and lower face-sheets and the core, respectively; ri(i ¼ t, b, c)
is the density of each component; ui(x, zi, t), wi(x, t) (i ¼ t, b) and uc(x, zi, t), wc(x, zi, t) are the longitudinal and
vertical displacements of the face-sheets and the core, respectively; ð:Þ denotes derivative with respect to time;
vi ¼ (i ¼ t, b, c) are the volume of the various components; and zi(i ¼ t, b, c) are the vertical coordinates of the
upper face sheet, lower face sheet, and the core, respectively, measured from the mid height of each layer
downwards.

The first variation of the kinetic energy, after integrating Eq. (2) by parts with respect to time and
prescribing the displacements at t ¼ t1 (initial conditions), reads:

dT ¼ �

Z t2

t1

Z L

0

Z dt=2

�dt=2
brt €utðx; zt; tÞdutðx; zt; tÞ þ €wtðx; tÞdwtðx; tÞð Þdxdzt

"

þ

Z L

0

Z db=2

�db=2
brb €ubðx; zb; tÞdubðx; zb; tÞ þ €wbðx; tÞdwbðx; tÞð Þdxdzb

þ

Z L

0

Z c=2

�c=2
brc €ucðx; zc; tÞducðx; zc; tÞ þ €wcðx; zc; tÞdwcðx; zc; tÞð Þdxdzc

#
dt, ð3Þ

where L is the length of the panel.
The first variation of the strain energy equals:

dU ¼

Z t2

t1

Z
vt

sxxtðx; zt; tÞd�xxtðx; zt; tÞdvt þ

Z
vb

sxxbðx; zb; tÞd�xxbðx; zb; tÞdvb

�

þ

Z
vc

ðtcðx; zc; tÞdgcðx; zc; tÞ þ szzðx; zc; tÞd�zzðx; zc; tÞdvc

�
dt, ð4Þ

where sxxiðx; zi; tÞ and �xxiðx; zi; tÞ (i ¼ t, b) are the longitudinal normal stresses and strains, respectively,
tcðx; zc; tÞ and gcðx; zc; tÞ are the shear stress and shear angle in the core; and szzðx; zc; tÞ and �zzðx; zc; tÞ are the
vertical normal stress and strain in the core. The notations, sign conventions, and the coordinate systems
appear in Fig. 2. Correspondingly, throughout the text, the term ‘‘vertical’’ refers to the out of plane response
of the panel.
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(b)

Fig. 2. Notations and sign conventions: (a) geometry displacements and coordinate systems; (b) stresses and internal stress resultants.
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2.2. Face-sheets: kinematic and constitutive relations

The kinematic relations for the face-sheets assume small deformations and they are given by (i ¼ t, b):

uiðx; tÞ ¼ uoiðx; tÞ � wi;xðx; tÞzi, (5)

�xxiðx; tÞ ¼ uoiðx; tÞ � ziwi;xxðx; tÞ, (6)

where uoi(x, t), wi(x, t), and wi,x(i ¼ t, b) are the longitudinal displacements, vertical displacements, and
rotation of the reference plane of each face-sheet and ðÞ;x denotes a partial derivative with respect to x.

The constitutive relations for the face-sheets use the classical lamination theory and read (i ¼ t; b):

Nxxiðx; tÞ ¼ b A11iuoi;x x; tð Þ � B11iwi;xx x; tð Þ
� �

, (7)

Mxxi x; tð Þ ¼ b B11iuoi;x x; tð Þ �D11iwi;xx x; tð Þ
� �

, (8)

where b is the width of the panel; A11i;B11i and D11iði ¼ t; bÞ are the axial, coupling, and flexural rigidities of
the isolated composite laminated face-sheets, respectively; and Nxxiðx; tÞ ði ¼ t; bÞ and Mxxiðx; tÞ ði ¼ t; bÞ are
the in-plane and the bending moment stress resultants, respectively, at the upper and lower face-sheets. The
stress resultants are defined as follows:

Nxxiðx; tÞ;Mxxiðx; tÞ
� �

¼

Z di=2

�di=2

Z b

0

sxxiðx; zi; tÞ 1; zif gdydzi; ði ¼ t; bÞ. (9)

2.3. Core: displacement and stress fields—displacements formulation

The kinematic relation of small deformation of the core read:

gcðx; zc; tÞ ¼ uc;zðx; zc; tÞ þ wc;xðx; zc; tÞ, (10)

�zzðx; zc; tÞ ¼ wc;zðx; zc; tÞ, (11)

where ðÞc;z denotes a partial derivative with respect to zc, Fig. 2.
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The linear elastic constitutive relations for the core are:

szzðx; zc; tÞ ¼ Ec�zzðx; zc; tÞ, (12)

tcðx; zc; tÞ ¼ Gcgcðx; zc; tÞ, (13)

where Gc and Ec are the shear modulus and modulus of elasticity of the core, respectively. Notice that the
modulus of elasticity in the longitudinal direction is assumed as null in this analysis.

The longitudinal and vertical displacements of the core are assumed to take a cubic and quadratic
polynomial variation in the thickness direction, respectively. Following the closed form analytical solutions of
the static case, see Ref. [37], they equal:

wcðx; zc; tÞ ¼ w0ðx; tÞ þ w1ðx; tÞzc þ w2ðx; tÞz
2
c , (14)

ucðx; zc; tÞ ¼ u0ðx; tÞ þ u1ðx; tÞzc þ u2ðx; tÞz
2
c þ u3ðx; tÞz

3
c , (15)

where uiðx; tÞ ði ¼ 0; 1; 2; 3Þ and wiðx; tÞ ði ¼ 0; 1; 2Þ are unknown functions. Hence, the acceleration field of the
core reads:

€wcðx; zc; tÞ ¼ €w0ðx; tÞ þ €w1ðx; tÞzc þ €w2ðx; tÞz
2
c , (16)

€ucðx; zc; tÞ ¼ €u0ðx; tÞ þ €u1ðx; tÞzc þ €u2ðx; tÞz
2
c þ €u3ðx; tÞz

3
c . (17)

The distinction between the fully bonded regions and the delaminated ones with and without contact, is
defined through the compatibility/debonding conditions at the core–face interface. These conditions govern
the displacement and stress fields of the core, see Ref. [37].

In the case of a fully bonded region, the compatibility between the face-sheets and the core is imposed
through the following conditions:

ucðx; zc ¼ �
c

2
; tÞ ¼ uotðx; tÞ �

dt

2
wt;xðx; tÞ, (18)

wcðx; zc ¼ �
c

2
; tÞ ¼ wtðx; tÞ, (19)

ucðx; zc ¼
c

2
; tÞ ¼ uobðx; tÞ þ

db

2
wb;xðx; tÞ, (20)

wcðx; zc ¼
c

2
; tÞ ¼ wbðx; tÞ. (21)

In the debonded region, the surfaces are free of shear stresses and may slip longitudinally one with respect
to the other. Thus, when the upper face–core interface is debonded, the longitudinal compatibility condition,
Eq. (18), is replaced with the following one:

tc x; zc ¼
c

2
; t

� 	
¼ 0. (22)

If vertical contact exists, Eq. (19) is used. If such contact does not exist, it is replaced with the following zero
vertical normal stress condition:

szzc x; zc ¼ �
c

2
; t

� 	
¼ 0. (23)

In the lower face–core interface, which is fully bonded, the compatibility conditions are given by Eqs. (20)
and (21).

The unknown functions, w0ðx; tÞ, w1ðx; tÞ, w2ðx; tÞ, u0ðx; tÞ, u1ðx; tÞ, u2ðx; tÞ, u3ðx; tÞ, that describe the
displacements of the core in Eqs. (14)–(15), are solved for using the relevant set of interfacial compatibility/
debonding conditions (fully bonded, debonded with contact, debonded without contact), Eqs. (18)–(23), along
with the static equilibrium in the core, and the constitutive relations, Eqs. (12)–(13). In the debonded region,
all seven functions describing the displacement fields of the core are expressed in terms of the displacements of
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the face sheets. On the other hand, in the fully bonded regions, only six functions are be expressed in terms of
the face-sheet displacements and the seventh function, w0ðx; tÞ, remains unknown. The formulation of the
stresses and displacement fields under static conditions appears in Ref. [37]. For brevity, only the final results,
which are augmented to include the time variable, are presented here. These results are presented for the case
where the upper core–face interface is debonded whereas similar expressions can be derived when the lower
core–face interface is debonded.

Hence, the displacement and stress fields of the core read:
Fully bonded:

wcðx; zc; tÞ ¼ 1�
4z2c
c2


 �
w0ðx; tÞ þ

2

c2
z2c �

1

c
zc


 �
wtðx; tÞ þ

2

c2
z2c þ

1

c
zc


 �
wbðx; tÞ, (24)

ucðx; zc; tÞ ¼
1

2
þ

zc

c


 �
uobðx; tÞ þ

1

2
�

zc

c


 �
uotðx; tÞ

þ �
dt

4
�

c

8


 �
þ

1

6
þ

dt

2c


 �
zc þ

1

2c
z2c �

2

3c2
z3c


 �
wt;xðx; tÞ

þ
4z3c
3c2
�

zc

3


 �
w0;xðx; tÞ þ

1

8
cþ

1

4
db þ

1

6
þ

db

2c


 �
zc �

1

2c
z2c �

2z3c
3c2


 �
wb;xðx; tÞ, ð25Þ

szzcðx; zc; tÞ ¼ Ecwc;zðx; zc; tÞ ¼
4zc

c2
þ

1

c


 �
Ecwbðx; tÞ þ

4zc

c2
�

1

c


 �
Ecwtðx; tÞ

�
8zc

c2
Ecw0ðx; tÞ, ð26Þ

tcðx; zc; tÞ ¼ Gc uc;zðx; zc; tÞ þ wc;xðx; zc; tÞ
� �

¼ �
Gc

c
uotðx; tÞ þ

Gc

c
uobðx; tÞ

þ
db

2c
þ

1

6


 �
Gcwb;xðx; tÞ þ

dt

2c
þ

1

6


 �
Gcwt;xðx; tÞ þ

2

3
Gcw0;xðx; tÞ. ð27Þ

Debonded region with contact:

wcðx; zc; tÞ ¼
1

2
wbðx; tÞ þ wtðx; tÞð Þ þ

wbðx; tÞ

c
�

wtðx; tÞ

c


 �
zc, (28)

ucðx; zc; tÞ ¼
dbwb;xðx; tÞ

2
þ

3cwb;xðx; tÞ

8
þ

cwt;xðx; tÞ

8
þ uobðx; tÞ


 �

�
wb;xðx; tÞ

2
þ

wt;xðx; tÞ

2


 �
zc þ

wt;xðx; tÞ

2c
�

wb;xðx; tÞ

2c


 �
z2c , ð29Þ

szzcðx; zc; tÞ ¼
Ec

c
wbðx; tÞ � wtðx; tÞð Þ, (30)

tcðx; zc; tÞ ¼ 0. (31)

Debonded region without contact:

wcðx; zc; tÞ ¼ wbðx; tÞ, (32)

ucðx; zc; tÞ ¼ uobðx; tÞ þ wb;xðx; tÞ
db

2
þ

c

2
� zc


 �
, (33)

szzcðx; zc; tÞ ¼ 0, (34)

tcðx; zc; tÞ ¼ 0. (35)
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2.4. Modified Galerkin approach

The solution procedure proposed uses the modified Galerkin method which is derived here from Hamilton’s
variational principle. The variational principle is stated explicitly in terms of displacements only and the
modified Galerkin method is formulated through the introduction of the trial functions. This formulation
leads to an algebraic eigenvalue problem that is solved for the natural frequencies and the vibration modes.

The variational principle expressed in terms of the unknown displacements is defined through the
introduction of the kinematic relations, the displacement fields, and the constitutive relations for the face-
sheets (Eqs. (5), (6), (7)–(9), respectively), the displacements and stress fields of the core, (Eqs. (24)–(35)), and
the corresponding acceleration fields (Eqs. (16)–(17)) into the Hamilton principle, Eqs. (1)–(3). After
integrating by parts and some algebraic manipulations, the variational principle is rewritten as the sum of two
expressions. The first one, denoted by dPfield includes terms that correspond to the response in the field. The
second expression, dPbound, is related to the boundary conditions and to the continuity conditions. Thus, the
variational principle takes the following form:

dP ¼ dPfield þ dPbound ¼ 0, (36)

where

dPfield ¼

Z t2

t1

Z x1

0

Lfb
1 Y; €Y
� �

duotðx; tÞ þ Lfb
2 Y; €Y
� �

dwtðx; tÞ þ Lfb
3 Y; €Y
� �

duob

��

þLfb
4 Y; €Y
� �

dwbðx; tÞ þ Lfb
5 Y; €Y
� �

dw0ðx; tÞ
�
dxþ

Z x2

x1

Ldel
1 Y; €Y
� �

duotðx; tÞ
�

þ Ldel
2 Y; €Y
� �

dwtðx; tÞ þ Ldel
3 Y; €Y
� �

duobðx; tÞ þ Ldel
4 Y; €Y
� �

dwbðx; tÞ
�
dx

þ

Z L

x2

Lfb
1 Y; €Y
� �

duotðx; tÞ
�

þ Lfb
2 Y; €Y
� �

dwtðx; tÞ þ Lfb
3 Y; €Y
� �

duobðx; tÞ

þLfb
4 Y; €Y
� �

dwbðx; tÞ þ Lfb
5 Y; €Y
� �

dw0ðx; tÞ

�
dx

�
dt ð37Þ

with x ¼ x1;x2 defining the coordinates of the edges of the debonded region, see Fig. 1, L
type
i Y; €Y
� �

; ði ¼ 1::5Þ
is a linear differential operator, the index ‘‘type’’ defines the type of the region: i.e. fb refers to a fully bonded
region and del refers to a delaminated region, and Y; €Y are the vectors of the unknown displacements and
accelerations:

Y ¼

wtðx; tÞ

wbðx; tÞ

uotðx; tÞ

uobðx; tÞ

w0ðx; tÞ

2
6666664

3
7777775
; €Y ¼

€wtðx; tÞ

€wbðx; tÞ

€uotðx; tÞ

€uobðx; tÞ

€w0ðx; tÞ

2
6666664

3
7777775
. (38)

The linear differential operators L
type
i Y; €Y
� �

; i ¼ 1::5ð Þ equal:

L
type
1 Y; €Y
� �

¼ Mt þ
a1Mc

3


 �
€uotðx; tÞ þ

a1bGc

c
uotðx; tÞ þ

a1Mc

6
€uobðx; tÞ

�
a1bGc

c
uobðx; tÞ þ a1Mc

db

12
þ

13c

360


 �
€wb;xðx; tÞ � a1bGc

db

2c
þ

1

6


 �
wb;xðx; tÞ

� a1Mc
dt

6
þ

17c

360


 �
€wt;xðx; tÞ � a1bGc

dt

2c
þ

1

6


 �
wt;xðx; tÞ þ EAtuot;xxðx; tÞ

þ
Mcc

90
€wo;xðx; tÞ �

2a1bGc

3
wo;xðx; tÞ, ð39Þ
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L
type
2 Y; €Y
� �

¼ Mt þ
a3Mc

3
þ

2a1Mc

15


 �
€wtðx; tÞ þ bEc

a3
c
þ

7a1
3c


 �
wtðx; tÞ

� Imt þ a3
Mcc

2

20
þ a1

67Mcc2

7560
þ a1

17cdt

360
þ a1

d2
t

12


 �
€wt;xxðx; tÞ

� abGc1
dt

6
þ

c

36
þ

d2
t

4c


 �
wt;xxðx; tÞ þ EItwt;xxxxðx; tÞ þ a1

17c

360
þ

dt

6


 �
Mc €uot;xðx; tÞ

þ a1bGc

1

6
þ

dt

2c


 �
uot;xðx; tÞ þMc

a3
6
�

a1
30

� 	
€wbðx; tÞ þ bEc

a1
3c
�

a3
c

� 	
wbðx; tÞ

�Mc
a1dt

12
þ

13a1c
360
�

a3c
6


 �
€uob;xðx; tÞ � bGc

a1
6
þ

a1dt

2c


 �
uob;xðx; tÞ

�Mc

13a1dbc

720
�

a3cdb

12
þ

13a1cdt

720
�

3a3c2

40
þ

59a1c2

7560
þ

a1dbdt

24


 �
€wb;xxðx; tÞ

� a1bG
dt

12
þ

db

12
þ

1

36
þ

dtdb

4c


 �
wb;xxðx; tÞ þ

a1Mc

15
€w0ðx; tÞ

�
8a1bEc

3c
w0ðx; tÞ þ a1Mc

cdt

180
þ

c2

945


 �
€w0;xxðx; tÞ � a1bGc

c

9
þ

dt

3


 �
w0;xxðx; tÞ, ð40Þ

L
type
3 Y; €Y
� �

¼ � EAbuob;xxðx; tÞ þ Mb þMc �
2a1Mc

3


 �
€uobðx; tÞ þ

a1bGc

c
uobðx; tÞ

þ a1
Mc

6
€uotðx; tÞ �

a1bGc

c
uotðx; tÞ �

a1c
90

Mc €w0;xðx; tÞ þ
2a1bGc

3
w0;xðx; tÞ

þMc
db

2
�

dba1
3
þ

a2c

2
þ

17a1c
360
þ

a3c
3


 �
€wb;xðx; tÞ þ a1bGc

db

2c
þ

1

6


 �
wb;xðx; tÞ

þMc

a3c
6
�

13a1c
360
�

a1dt

12


 �
€wt;xðx; tÞ þ a1bGc

dt

2c
þ

1

6


 �
wt;xðx; tÞ, ð41Þ

L
type
4 Y; €Y
� �

¼ EIbwb;xxxxðx; tÞ þMc

a3
6
�

a1
30

� 	
€wtðx; tÞ þ

bEc

c

a1
3
� a3

� 	
wtðx; tÞ

� Mb þ
2a1Mc

15
þ

a3Mc

3
þ a2Mc


 �
€wbðx; tÞ þ

bEc

c
a3 þ 7a1ð Þwbðx; tÞ

�Mc

db

2
�

a1db

3
þ

a3c

3
þ

17a1c

360
þ

a2c
2


 �
€uob;xðx; tÞ � a1bGc

db

2c
þ

1

6


 �
uob;xðx; tÞ

�Mc
2a3
15
þ

67a1
7560

þ
a2
3


 �
c2



�

1

4
þ

a1
6


 �
d2

b �
a2
2
þ

17a1
360
þ

a3
3


 �
cdb

�
€wb;xxðx; tÞ

� a1Gcb
d2

b

4c
þ

c

36
þ

db

6


 �
wb;xxðx; tÞ � Imb €wb;xxðx; tÞ

þ a1Mc

cdb

180
þ

c2

945


 �
€w0;xxðx; tÞ þ a1bGc �

db

3
�

c

9


 �
w0;xxðx; tÞ þ a1

Mc

15
€w0ðx; tÞ

� a1
8bEc

3
w0ðx; tÞ � a1Mc

13c

360
þ

db

12


 �
€uot;xðx; tÞ þ a1bGc

1

6
þ

db

2c


 �
uot;xðx; tÞ

þMc

13a1
720
�

a3
12


 �
cdb þ

59a1
7560

�
3a3
40


 �
c2 þ

a1dbdt

24
þ

13a1dtc

720


 �
€wt;xxðx; tÞ

� a1bGc

dt

12
þ

db

12
þ

c

36
þ

dbdt

4c


 �
wt;xxðx; tÞ, ð42Þ
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L
type
5 Y; €Y
� �

¼ a1Mc

c2

945
þ

dbc

180


 �
€wb;xxðx; tÞ � a1bGc

db

3
þ

c

9


 �
wb;xxðx; tÞ

�
a1Mc

15
€wtðx; tÞ �

a18bEc

3c
wtðx; tÞ þ

a1Mc

15
€wbðx; tÞ þ

a18bEc

3c
wbðx; tÞ

þ a1Mc

c2

945
þ

dtc

180


 �
€wt;xxðx; tÞ � a1bGc

dt

3
þ

c

9


 �
wt;xxðx; tÞ

�
a1Mcc

90
€uot;xðx; tÞ þ

a12bGc

3
uot;xðx; tÞ þ

a1Mcc

90
€uob;xðx; tÞ �

a12bGc

3
uob;xðx; tÞ

þ
8a1Mc

15
€w0ðx; tÞ þ

a116bEc

3c
w0ðx; tÞ �

2a1c2

945
Mc €w0;xxðx; tÞ �

a14bGcc

9
w0;xxðx; tÞ, ð43Þ

where a1; a2 and a3 are flags that define the type of regions as follows: a1 ¼ 1 and a2 ¼ a3 ¼ 0 for a fully bonded
region (fb); a2 ¼ 1 and a1 ¼ a3 ¼ 0 for a debonded region without contact (del); a3 ¼ 1 and a2 ¼ a1 ¼ 0 for a
debonded region with contact (del), which can accommodate vertical compressive or tensile normal stresses,
and Mi; Imiði ¼ t; b; cÞ are the mass and the moment of inertia, respectively, of the face-sheets and the core.

The variational expression that corresponds to the terms at the boundaries of the various regions, i.e., at the
edges of the unidirectional panel and at the mutual joints between different types of regions, is:

dPbound ¼

Z t2

t1

Bfb
1 duotðx; tÞ

��x1

0
þ Bfb

2 dwt;xðx; tÞ
��x1

0
þ Bfb

3 dwtðx; tÞ
��x1

0

�
þ Bfb

4 duobðx; tÞ
��x1

0
þ Bfb

5 dwb;xðx; tÞ
��x1

0
þ Bfb

6 dwbðx; tÞ
��x1

0
þ Bfb

7 dw0ðx; tÞ
��x1

0

þ Bdel
1 duotðx; tÞ

��x2

x1
þ Bdel

2 dwt;xðx; tÞ
��x2

x1
þ Bdel

3 dwtðx; tÞ
��x2

x1
þ Bdel

4 duobðx; tÞ
��x2

x1

þ Bdel
5 dwb;xðx; tÞ

��x2

x1
þ Bdel

6 dwbðx; tÞ
��x2

x1
þ Bfb

1 duotðx; tÞ
��L
x2
þ Bfb

2 dwt;xðx; tÞ
��L
x2

þ Bfb
3 dwtðx; tÞ

��L
x2
þ Bfb

4 duobðx; tÞ
��L
x2
þ Bfb

5 dwb;xðx; tÞ
��L
x2
þ Bfb

6 dwbðx; tÞ
��L
x2

þBfb
7 dw0ðx; tÞ

��L
x2

	
dt, ð44Þ

where B
type
j Y; €Y
� �

; ðj ¼ 1::7Þ are linear differential operators that equal:

B
type
1 ðY;

€YÞ ¼ EAtuot;xðx; tÞ, (45)

B
type
1 ðY;

€YÞ ¼ EItwt;xxðx; tÞ, (46)

B
type
3 Y; €Y
� �

¼Mc

a3c
6
�

13a1c

360
�

a1dt

12


 �
€uobðx; tÞ þ a1bGc

1

6
þ

dt

2c


 �
uobðx; tÞ

þMc

a1d
2
t

12
þ

a3c2

20
þ

67a1c2

7560
þ

17a1cdt

360
þ Imt


 �
€wt;xðx; tÞ

þ a1bGc

dt

6
þ

c

36
þ

d2
t

4c


 �
wt;xðx; tÞ � EItwt;xxxðx; tÞ � a1Mc

17c

360
þ

dt

6


 �
€uotðx; tÞ

� a1bGc

1

6
þ

dt

2c


 �
uotðx; tÞ þ a1bGc

dt

3
þ

c

9


 �
w0;xðx; tÞ

þMc

3a3c2

40
�

59a1c2

7560
�

13a1cdb

720
�

13a1cdt

720
�

a1dtdb

24
þ

a3cdb

12


 �
€wb;xðx; tÞ

þ a1bGc

dt

12
þ

c

36
þ

dtdb

4c
þ

db

12


 �
wb;xðx; tÞ � a1Mc

c2

945
þ

cdt

180


 �
€w0;xðx; tÞ, ð47Þ

B
type
4 ðY;

€YÞ ¼ EAbuob;xðx; tÞ, (48)

B
type
5 ðY;

€YÞ ¼ EIbwb;xxðx; tÞ, (49)
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B
type
6 Y; €Y
� �

¼ � EIbwb;xxxðx; tÞ þ Imb €wb;xðx; tÞ þ a1bGc
db

6
þ

c

36
þ

d2
b

4c


 �
wb;xðx; tÞ

þMc

d2
b

4
�

a1d
2
b

6
þ

2a3c2

15
þ

a2c2

3
þ

67a1c2

7560
þ

a2cdb

2
þ

a3cdb

3
þ

17a1cdb

360


 �
€wb;xðx; tÞ

þMc

3a3c2

40
�

59a1c2

7560
�

13a1cdb

720
�

13a1cdt

720
�

a1dtdb

24
þ

a3cdb

12


 �
€wt;xðx; tÞ

þ a1bGc
dt

12
þ

c

36
þ

dtdb

4c
þ

db

12


 �
wt;xðx; tÞ þ a1Mc

13c

360
þ

db

12


 �
€uotðx; tÞ

� a1bGc

1

6
þ

db

2c


 �
uotðx; tÞ þMc

db

2
�

a1db

3
þ

a2c

2
þ

17a1c
360
þ

a3c
3


 �
€uobðx; tÞ

þ a1bGc

1

6
�

db

2c


 �
uobðx; tÞ � a1Mc

c2

945
þ

cdb

180


 �
€w0;xðx; tÞ

þ a1bGc

db

3
þ

c

9


 �
w0;xðx; tÞ, ð50Þ

B
type
7 Y; €Y
� �

¼ �
c

90
a1Mc €uobðx; tÞ þ

2a1bGc

3
uobðx; tÞ þ

c

90
a1Mc €uotðx; tÞ

�
2a1bGc

3
uotðx; tÞ � a1Mc

dtc

180
þ

c2

945


 �
€wt;xðx; tÞ þ a1bGc

dt

3
þ

c

9


 �
wt;xðx; tÞ

� a1Mc

dbc

180
þ

c2

945


 �
€wb;xðx; tÞ þ a1bGc

db

3
þ

c

9


 �
wb;xðx; tÞ þ

4a1bGcc

9
w0;xðx; tÞ

þ
2c2

945
a1Mc €w0;xðx; tÞ. ð51Þ

Note that the distinction between the terms of the fully bonded regions and the terms of the delaminated
regions is achieved through the use of the appropriate values of a1, a2, and a3.

The free vibration behavior of the unidirectional delaminated panel is solved using a harmonic behavior in
time and expanding the unknown displacements as a truncated series of admissible functions multiplied by
unknown constants. These functions satisfy at least the geometrical boundary conditions at the edges of the
unidirectional panel. For a panel that is simply supported at the upper and lower face-sheets and at the core
the following series expansion is adopted:

wtðx; tÞ

wbðx; tÞ

uotðx; tÞ

uobðx; tÞ

w0ðx; tÞ

2
6666664

3
7777775
� eiot

PN
n¼1

Cwtn sin
npx

lPN
n¼1

Cwbn sin
npx

lPN
n¼0

Cuotn cos
npx

lPN
n¼0

Cuobn cos
npx

lPN
n¼1

Cw0n sin
npx

l

2
6666666666666666664

3
7777777777777777775

, (52)

where i is the imaginary unit, o is the frequency, Ckðk ¼ wtn;wbn; uobn; uotn;w0nÞ are scalar unknowns
(amplitudes), and n is the wave number. Notice that in order to allow complete expansion of the functional
base by the trial functions, the cosine series also includes the constant (n ¼ 0) term. Nevertheless, in the fully
bonded unidirectional panel where the solution can be decoupled and can be separately solved for each wave
number, the contribution of the terms associated with n ¼ 0 vanishes.
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The eigenvalue problem is formulated through substituting Eq. (52), into the variational principle, Eq. (36),
and integrating in the x direction. Thus it reduces to the following form:

�o2Mþ K
� �

C ¼ 0, (53)

where o2 is the eigenvalue, C is the eigenvector associated with the unknown constants Ck k ¼ wtn;wbn;ð

uobn; uotn;w0nÞ; M and K are the mass and stiffness matrixes of dimension 5N þ 2ð Þ � 5N þ 2ð Þ, respectively;
and 0 is a null vector of dimension 5N þ 2ð Þ.

The M and K matrixes comprise of terms related to the behavior within the field, which originate from
dPfield, as well as terms associated with the boundaries and the joints between the bonded and debonded
regions. The region boundary terms, which originate from dPbound, impose the continuity requirements of the
internal stress resultants, which are not identically satisfied by the series expansion of the unknowns. These
terms are the result of the variational procedure and they correspond to the terms of the various joints used in
the ‘‘modified Galerkin method’’ [38].

In order to describe properly the dynamic behavior of the unidirectional delaminated panel, the series
expansion of the displacements must include a sufficient number of terms, which mainly depends on the length
of the debonded region and the core to face-sheet stiffness ratio. In the case of a fully bonded panel, the
solution is decoupled and can be obtained separately for each wave number, n, which results in five eigenvalues
and eigenvectors for each wave number. On the other hand, in the case of a delaminated panel, the
trigonometric terms are coupled, and the solution procedure must involve all trigonometric terms
simultaneously.

3. Model verification

The model developed here is confirmed through comparison of the natural frequencies and the vibration
modes with results of a commercial 2D finite element package, Ansys [39], and with special asymptotic cases
with analytical results.

Two cases of simply supported unidirectional sandwich panels that differ in their geometrical and
mechanical properties are examined. The density and the elastic properties of the face-sheets and the core in
the various panels appear in Table 1. The dimensions of the various components appear in Table 2. Panel A,
which is used for comparison with the FE results, consists of a 20mm long debonded region ‘‘without contact’’
at midspan. The face-sheets are modeled using the BEAM54 element with the offset option enabled, isotropic
constitutive behavior, and negligible shear deformations. The PLANE42 four-node element is used for the
core. The core is assumed to be linear, elastic, orthotropic with Gcyx ¼ Gcyz ¼ 10�4Gcxz and Ecxx ¼ Ecyy ¼

10�4Eczz, and under plane stress conditions. In the analytical solution, the deflection response is expanded
using a truncated series with N ¼ 100. The comparison of the natural frequencies determined by the FE
analysis and the analytical model appears in Table 3 and, for reference, the natural frequencies for the fully
bonded unidirectional panel are presented too in Table 3. The results of the proposed model compare very well
with those of the FE results. Yet, some minor differences in the frequencies of the anti-symmetric modes are
observed. These differences are attributed to the null longitudinal stiffness of the core in the analytical model
versus the small but non-zero stiffness in the FE analysis and to the singularities that occur at the tips of the
delaminated region and near the supports. In the FE model, these locations of stress concentration are
Table 1

Material properties of the core and the face-sheets

Panel A Panel B

Core Ec (MPa) 50 85

Gc (MPa) 21 16

rc (kg/m
3) 52 100

Face-sheets Ef ¼ Et, Eb (MPa) 36,000 27,420

rt, rb (kg/m3) 4400 1630.9
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Table 2

Geometrical properties of the core and the face-sheets

Panel A Panel B

Core c (mm) 19.05 19.05

Face-sheets dt (mm) 0.5 0.5

db (mm) 1.0 0.5

Panel L (mm) 300 300

b (mm) 20 20

Table 3

Natural frequencies (rad/sec) of fully bonded unidirectional panel and delaminated unidirectional panel (ld ¼ 20;x1 ¼ 140mm)

Delaminated panel Fully bonded panel

Mode Present modela FEA Difference% Present model FEA Difference %

o1 1815.7 1816.15 0.02 1817 1826.9 0.54

o2 2408.8 2574 6.45 4450.3 4465.27 0.33

o3 6869.0 6895 0.38 7001 7022.7 0.02

o4 7206.5 7238 0.44 9494.8 9520.9 0.27

o5 11129.9 11187.8 0.51 11952.2 11982.6 0.25

aincluding rotatory inertia.
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associated with divergence of the stresses with refinement of the mesh whereas the analytical model is not
affected by the singularities.

The next case that is used for verification consists of a symmetric unidirectional panel with a debonded
region that asymptotically extends through the entire length of the panel. Here, the behavior of the
delaminated panel without contact can be described by the response of two separate simply supported
unidirectional panels with different masses. Notice that here, the mass of the core is carried only by the lower
bonded face-sheet. Taking advantage of the symmetry of the panel, the response of the delaminated panel with
contact may be described by that of two beams with equal mass properties for the symmetrical bending modes
with wt ¼ wb and by that of two beams that rest on an elastic foundation for the anti-symmetric ‘‘pumping’’
models with wt ¼ �wb. The first four natural frequencies and the corresponding vibration modes associated
with a debonded region ‘‘with and without contact’’ are described in Fig. 3(a) and (b), respectively. The
natural frequencies obtained by the proposed model and the analytical expressions of the natural frequencies
for the asymptotic cases appear in Table 4. Notice that the first and third modes of the delaminated panel
‘‘without contact’’ correspond to the first and second modes of a beam that has the stiffness of the lower face-
sheet and the combined mass of the core and the lower face-sheet. The second and fourth modes of a ‘‘without
contact’’ delaminated panel correspond to the first and second modes of a panel with the stiffness and mass of
the upper face-sheet alone. The minor differences between the natural frequencies predicted by the proposed
model and the analytical results for the asymptotic cases are attributed to the rotatory inertia terms. Thus, the
natural frequencies predicted by the proposed model (that accounts for the rotatory inertia terms) are slightly
lower than the analytical ones of the asymptotic cases. The first four vibration modes of a unidirectional
delaminated panel ‘‘with contact’’ appear in Fig. 3(b) and the corresponding natural frequencies appear in
Table 4. These results reveal that all four modes are symmetric with respect to the mid-height surface of the
panel with wt ¼ wb. Thus, they coincide with the response of a simply supported beam that consists of
the stiffness of one face sheet and half of the total mass of the sandwich panel. The first ‘‘pumping’’ mode and
the first mode associated with longitudinal displacements of the face-sheets are characterized by significantly
higher frequencies. Also here, the differences between the proposed model and the asymptotic model are due
to the rotatory inertia terms. The influence of these terms becomes more prominent with the increase of the



ARTICLE IN PRESS

a

b

Fig. 3. Vibration modes for panel A with a debonded region extended through the entire length: (a) ‘‘without contact’’ model (b) ‘‘with

contact’’ model.

Table 4

Natural frequencies (rad/s) of unidirectional panel with a debonded region that extends through the entire length (ld ¼ 300mm)—with and

without contact, comparison between asymptotic cases and present model

Delaminated region without contact Delaminated region with contact

Mode Present modela Asymptotic case Present modela Asymptotic case

o1 35.363 p
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EbIb

mc þmb

r
¼ 35:533

43.915 p
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EtIt

0:5mc þmt

r
¼ 44:078

o2 64.901 p
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EtI t

mc þmt

r
¼ 64:902

173.37 4p
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EtIt

0:5mc þmt

r
¼ 176:31

o3 139.46 4p
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EbIb

mc þmb

r
¼ 142:13

384.06 9p
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EtIt

0:5mc þmt

r
¼ 396:70

o4 259.60 4p
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EtI t

mc þmt

r
¼ 259:61

666.71 16p
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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aincluding rotatory inertia.
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‘‘waviness’’ of the vibration mode. Hence, the differences observed in the forth frequency of the ‘‘with
contact’’ model are the most notable ones (see Fig. 3(b) and Table 4).

Finally, we can state that the results of the proposed model compare well with those of the FEA and the
asymptotic cases.

4. Numerical study

The free vibrations behavior of a simply supported delaminated unidirectional sandwich panel with a ‘‘soft’’
core is studied numerically. The first numerical example focuses on the capabilities of the model and
examines the differences between the dynamic behavior of delaminated panels ‘‘with and without contact’’.
Emphasis is placed on the vibration modes that are associated with the compressibility of the core and with
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relative out-of-plane displacements of the face-sheets. The ability of the model to describe the stress and
displacement field modes along the unidirectional panel, and especially at the locations of stress
concentrations, near the tip of the interfacial delamination crack, is examined too. Finally, a parametric
study that investigates the influence of the length and location of the debonded region and the mechanical
properties of the core is presented. The layouts of the two unidirectional panels considered appear in Fig. 1
and the geometrical and mechanical properties associated with each case are summarized in Tables 1 and 2,
respectively.

4.1. ‘‘With Contact’’ and ‘‘Without Contact’’ models—comparison

The geometrical and mechanical properties considered here correspond to panel A, see Tables 1 and 2,
respectively, and the delaminated region is located at mid span at the upper core–face interface. The solution
uses truncated series expansion of the displacements along the panel with N ¼ 100.

The first five modes and the corresponding natural frequencies associated with a delaminated length
of ld ¼ 10mm appear in Fig. 4. Notice, that ōwc

i and ōwoc
i are the ith normalized natural frequencies of

the ‘‘with and without contact’’ models, respectively. They are normalized with respect to the corresponding
frequencies of the fully bonded unidirectional panel. The results reveal that the natural frequencies of the
‘‘with contact’’ case slightly differ from the ones of the ‘‘without contact’’ case. This effect is more pro-
minent for the anti-symmetric modes, where the modes of the two models are almost identical but correspond
to different natural frequencies. The modes in the case of a longer delaminated region (ld ¼ 80mm)
appear in Fig. 5 and reveal that the response (modes and frequencies) of the ‘‘with contact’’ and ‘‘without
contact’’ case are quiet different. This observation clarifies that in the cases associated with relatively
long delaminated region, the assumption of contact conditions at the debonded interface critically affects
the results.

The influence of the contact conditions at the debonded region on the free vibration of a unidirectional
sandwich panel with a 20mm long delaminated region at mid-span has been also compared for two different
core materials. The first core is relatively stiff with Ec ¼ 0:095Et, while the second one is very soft with
Ec ¼ 0:001Et. The mass densities and the shear moduli of the cores equal: rc ðkg

�
m3Þ ¼ 1:0805Ec ðEc inMPaÞ,

Gc ¼ 0:4Ec, respectively, see Ref. [40] and the geometrical properties are those of Panel A, see Tables 1 and 2.
The first five natural frequencies and the corresponding vibration modes appear in Figs. 6 and 7 for the
relatively stiff and for the very soft cores, respectively. The results reveal that for the panels with the stiff
core, the differences between the natural frequencies of the ‘‘with contact’’ and ‘‘without contact’’ models
are considerable, while in the case of unidirectional panels with the very soft core, the natural frequencies
and corresponding vibration modes almost coincide. This effect is caused by the limited ability of the
soft core to effectively transfer loads from one face-sheet to the other. Notice also that in the case
of a relatively stiff core, the modes may change their order between the two models, see, for example, the fifth
and sixth modes described in Fig. 6. Hence, it implies that in spite of the relatively small length of
the delaminated regions, the contact conditions at the debonded interface affect the dynamic response of
the panel.

The existence of modes involving a relative displacement between the two face-sheets (‘‘pumping modes’’) is
demonstrated in Ref. [32] for the fully bonded unidirectional panel and it occurs at the 32 mode number.
However, when a delaminated region exists, pumping modes that correspond to lower frequencies may appear
as a local phenomenon at the delaminated region. Furthermore, as illustrated in Fig. 5 for panel A with a mid-
span delaminated region of 80mm long, pumping modes are more likely to appear in cases where there is no
contact between the delaminated surfaces. Another important factor that dominates the existence of the
pumping modes at lower modes is the length of the debonded region. In panels with longer delaminated
regions, the pumping modes correspond to lower natural frequencies. This relation is demonstrated in Figs. 4
and 5 where pumping modes do not exist within the lowest five vibration modes of panels with small
delaminated region lengths, but appear when longer debonded regions are considered. Fig. 6 further reveals in
that the case of panels with the relatively stiff cores (Ec ¼ 0:095Et), the pumping modes may occur in the lower
modes, even for small delaminated region lengths. This is not the case when the panel is made of a very soft
core (Ec ¼ 0:001Et), see Fig. 7.
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(b)(a)

Fig. 4. First five modes and normalized natural frequencies for panel A with ld ¼ 20mm at midspan: (a) ‘‘without contact’’ model

(b) ‘‘with contact’’ model. Legend: -wt, -wb, -uot, -uob.
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One of the most important aspects of the structural response of the delaminated unidirectional sandwich
panel is the stress concentrations that occur in the vicinity of the tips of the delaminated region. The vertical
normal stresses mode at the upper core–face interface and the shear stresses in the core corresponding to
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Fig. 5. First five modes and normalized natural frequencies for panel A with ld ¼ 80mm at midspan: (a) ‘‘without contact’’ model

(b) ‘‘with contact’’ model. Legend: -wt, -wb, -uot, -uob.
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the first and second modes of panel A with ld ¼ 80mm appear in Figs. 8 and 9, respectively. The
results include the behavior associated with the ‘‘with contact’’ model and the ‘‘without contact’’ model and
are compared with the fully bonded case. In all cases, the modes are normalized with respect to a unit maximal
deflection (wt, wb, uot or uob). It is seen that the first mode of the fully bonded unidirectional panel is
symmetric, see Fig. 8(a), but for the delaminated panel, with and without contact, it is anti-symmetric, see
Figs. 8(d) and 8(g), respectively. An opposite behavior is detected for the second mode, see Fig. 9. Here, the
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Fig. 6. First five modes and normalized natural frequencies for panel A with a soft core and with ld ¼ 20mm at midspan: (a) ‘‘without

contact’’ model (b) ‘‘with contact’’ model. Legend: -wt, -wb, -uot, -uob.

H. Schwarts-Givli et al. / Journal of Sound and Vibration 301 (2007) 253–277270
second mode of the fully bonded panel is an anti-symmetric one, see Fig. 9(a), while that of the delaminated
panel is symmetric, see Figs. 9(d) and 9(g). In general, Figs. 8 and 9 reveal that the existence of a delaminated
region leads to a change in the mode shapes, a sharp increase in the shear stresses in the vicinity of the tips of
the debonded region, see Figs. 8(c), (f), and (i) and 9(c), (f), and (i), and the development of large, yet finite,
vertical normal stresses, see Figs. 8(b), (e), and (h) and 9(b), (e), and (h).
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(b)(a)

Fig. 7. First five modes and normalized natural frequencies for panel A with a stiff core and with ld ¼ 20mm at midspan: (a) ‘‘without

contact’’ model (b) ‘‘with contact’’ model. Legend: -wt, -wb, -uot, -uob.
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4.2. Parametric study

The parametric study investigates the influence of the delaminated region length, its location, and the
mechanical properties of the core on the free vibrations behavior of a delaminated simply supported
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(a) (b) (c)

(f)

(i)

(e)

(h)

(d)

(g)

Fig. 8. First mode with shear and vertical normal stresses in fully bonded and delaminated unidirectional panels (ld ¼ 80mm,

delamination at midspan): fully bonded: (a) displacements; (b) vertical normal stresses; (c) shear stresses; delaminated unidirectional panel

(with contact): (d) displacements; (e) vertical normal stresses; (f) shear stresses; delaminated unidirectional panel (without contact): (g)

displacements; (h) vertical normal stresses; (i) shear stresses. Legend: -wt, -wb, -uot,

-uob.
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unidirectional sandwich panel. The influence of the various parameters on the differences between the two
cases of debonded region ‘‘with and without contact’’ is also examined.

The influence of the length of the delaminated region on the first five natural frequencies of the ‘‘with
contact’’ and ‘‘without contact’’ models appears in Fig. 10. The results reveal that, as expected, the natural
frequencies drastically decrease as the delaminated length increases. Moreover, this effect is pronounced in the
‘‘without contact’’ case. Interestingly, the results in Fig. 10 indicate that the dependence of the frequency on
the delaminated region length is not necessarily monotonic. This phenomenon is attributed to the changes in
the shape of the vibration modes and the transition between symmetric and anti-symmetric modes for different
delaminated lengths, see Fig. 5.

The influence of the location, xd , of 20mm long delaminated regions without contact along the panel on the
first five natural frequencies appear in Fig. 11 (xd , is the x coordinate of the left edge of the debonded region).
The results reveal that the influence of the location of the delaminated region differs from one mode to the
other. For example, the first natural frequency is mostly affected when the debonded region is located near the
supports. On the other hand, the second natural frequency is mostly affected when the debonded region is
located close to mid-span. The third frequency is affected when xd is about one third of the panel’s length. In
general, the results indicate that the influence of the delaminated region is more prominent when it is found in
the vicinity of locations that correspond to high shear stress in the core of the fully bonded panel. Notice, that
the presence of the delaminated region critically damages the ability of the core to transfer shear and the
collaboration between the two face sheets.

Finally, the influence of the mechanical properties of the core on the free vibrations of a unidirectional
sandwich panel with a 20mm long delaminated region at mid-span is investigated. The results for the ‘‘with
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(f)

(i)

(e)

(h)

(d)

(g)

Fig. 9. Second mode with shear and vertical normal stresses in fully bonded and delaminated unidirectional panels (ld ¼ 80mm,

delamination at midspan): fully bonded: (a) displacements; (b) vertical normal stresses; (c) shear stresses; delaminated unidirectional panel

(with contact): (d) displacements; (e) vertical normal stresses; (f) shear stresses; delaminated unidirectional panel (without contact): (g)

displacements; (h) vertical normal stresses; (i) shear stresses. Legend: -wt, -wb, -uot,

-uob.
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and without contact’’ models are presented in Fig. 12. The non-dimensional frequencies are normalized with
respect to the corresponding frequencies of the fully bonded panel A (with Ec ¼ 0:0525Et, see Table 1). The
mass and shear modulus of the core equal: rc ðkg=m

3Þ ¼ 1:0805Ec ðEc inMPaÞ, Gc ¼ 0:4Ec, see Ref. [40]. The
results are presented for values of Ec=Ef in the range of 0.0001 to 0.1, which covers the typical range of moduli
ratios for cores made of foam or nomex honeycomb. The results in Fig. 12 reveal that for relatively flexible
cores, the natural frequencies increases with the increase of the core moduli. On the other hand, for relatively
stiff core materials, the opposite trend is observed. The comparison of the results of the ‘‘with contact’’ model
to those of the ‘‘without contact’’ model, reveals that the first and second natural frequencies are similar in
both models, whereas the other frequencies are different. This behavior is a result of the changes in the mode
shapes and of the development of ‘‘pumping’’ vibration modes, see Fig. 6. The curves also reveal that the
decrease in the value of the natural frequencies is more prominent for the stiffer cores.

5. Summary and conclusion

A consistent variational high-order approach and a modified Galerkin procedure for the free vibrations
analysis of delaminated unidirectional sandwich panels with a flexible core have been presented. The
mathematical formulation, which is based on Hamilton’s variational principle and the high-order sandwich
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Fig. 11. First five natural frequencies versus the location of a 20mm delamination (‘‘with contact’’ model). Legend: o1- , o2-

, o3- , o4- , o5- .

Fig. 10. First five natural frequencies versus delamination length (delamination located at mid span). Legend: -without

contact, -with contact, o1- , o2- , o3- , o4- , o5- .
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panel theory approach, makes a distinction between bonded regions, debonded regions with contact and
debonded regions without contact. The Hamilton principle is expressed in terms of displacements only,
leading to a consistent variational formulation that avoids the use of a mixed stress/displacement formulation.

The free vibrations analysis has been solved by assuming a harmonic behavior in time, expanding the
unknown displacements as a truncated series of admissible functions that satisfy at least the geometrical
boundary conditions at the edges of the panel, and employing the modified Galerkin’s method. Notice that
with various trial functions, the proposed approach can be applied to any boundary conditions, including
those which are different for each face sheet and the core at the same section.

The longitudinal and vertical displacements of the core have taken a cubic and quadratic polynomial
variation through the height, respectively, in accordance with closed form analytical solutions of the static
case. The compressibility and shear deformability of the core, which leads to nonlinear displacements,
velocity, and acceleration fields in the core and allow the development of modes with relative displacement
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Fig. 12. First five natural frequencies (normalized with respect to the corresponding frequencies of the same unidirectional panel with the

core of panel A), versus core–face elastic moduli ratio where rc ðkg=m
3
Þ ¼ 1:0805Ec ðMPaÞ and Gc ¼ 0:4Ec. Legend: -

without contact, -with contact, o1- , o2- , o3- , o4- , o5- .
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between the two face-sheets in the vertical and longitudinal directions, ‘‘pumping’’ modes, has also been
considered. The natural frequencies and vibration modes determined by the proposed model have been
verified through comparison with FE results as well as with special asymptotic cases.

The numerical study has focused on the natural frequencies, the vibration modes, and the corres-
ponding stress field mode in the core. The results have revealed that the assumption with regards to the
contact conditions at the debonded interface has a major influence on the natural frequencies and the
vibration modes. It has been found that the contact conditions (either ‘‘with contact’’ or ‘‘without contact’’) at
the delaminated surfaces has a significant influence in cases involving large delaminated regions or stiff
core materials. In these cases, the different contact cases are associated with different mode shapes. The results
have also demonstrated the ability of the model to reveal modes involving relative displacement between the
two face-sheets, either in the vertical or the horizontal direction such as the ‘‘pumping’’ modes. Notice,
that in the fully bonded panel, this mode occurs at higher mode number, while in the case of delaminated
panels it occurs at lower modes. Hence, the ability to predict and quantify these effects, which is beyond the
capabilities of models that use ‘‘equivalent’’ single layer, lamination, or the classical incompressible core
theories, is essential for the analysis and assessment of delaminated sandwich panels. The numerical study has
also described stress and displacement fields along the panel and, in particular, at points with high stresses,
such as at the tip of the interfacial delaminatied crack. Contrary to the FEA, which has difficulties handling
the singular points at the interfacial crack tip, the results of the proposed model demonstrate its ability to cope
with the stress concentrations that develop near this point.

Finally, a parametric study that examines the influence of the length and the location of the debonded
region and the mechanical properties of the core on the free vibrations behavior of delaminated unidirectional
sandwich panel has been presented. The study has quantitatively revealed that the influence of the delaminated
region on the dynamic characteristics is amplified as the length of the debonded region is increased. It has also
been observed that the location of the debonded region dictates which modes are affected.

The model presented in this paper provides a general approach for the free vibrations analysis
of the delaminated unidirectional sandwich panel. The ‘‘with contact’’ and ‘‘without contact’’ models can
be used for the initial assessment of the range of response of the panel under realistic time and space-
dependent contact conditions. Thus, the model developed here further provides a basis for an inclusive,
fully nonlinear, and dynamic analysis that accounts for the complex contact conditions within the delaminated
panel.
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